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An evolutionary compass to detect selection and mutational bias

Selection on quantitative traits is known to induce dependency between mean squared effect sizes and derived
allele frequency (DAF) (Eyre-Walker, 2010; Uricchio et al., 2016), but the relationship between effect sizes β̄ and
DAF under selection models has not been widely explored. Under some models, for example when mutation rates
for trait increasing and decreasing alleles are symmetric and the fitness cost of a mutation does not depend on the
direction of its effect, selection will not induce a relationship between effect size and allele frequency. However,
other models, such as those in which selection preferentially drives trait-increasing alleles to high frequency with
selection pressure that increases as a function of β, may drive such a correlation (e.g., Fig. S1A-C), which could
potentially be detected in GWAS summary statistics data. We hypothesized that a better understanding of this
relationship between β and DAF could provide new insights into the evolution of complex traits.

Models with symmetric mutation rates have often been applied to quantitative traits, but there is no a priori
reason to suppose that this condition is met in natural populations. Indeed, it is possible that there are an
unequal number of fixed bi-allelic sites genome-wide that can increase or decrease a phenotype relative to its
current value, which naturally will change the relative rate of trait-increasing as compared to trait-decreasing
alleles. For example, if past selection events have driven the phenotype to ever larger values, we might expect
that the majority of trait-increasing alleles have already been fixed by positive selection in the evolutionary past,
and that further recurrent mutations at these fixed sites would therefore decrease the phenotype.

Temporal variation in the optimal value of selected traits may also be an important determinant of the
evolutionary dynamics of complex traits, as such changes may be a mechanism for polygenic adaptation (Jain
and Stephan, 2017). When a population’s environment is altered, perhaps by migration, a change in climate,
or the elimination/introduction of competing species, it is likely that selection pressures on phenotypes will also
change. If the population persists long enough in this new environment it is expected that the phenotype mean
will approach the new phenotype optimum, and the population will again be at equilibrium. In the intervening
time, while the population is out of equilibrium, allele frequencies will shift as a function of their effect on the
phenotype. Our goal is to capture selection’s impact on the causal variation during this out-of-equilibrium time
period.

In this project, we sought to capture how mutational bias and selection pressure would affect the relationship
between β̄ and allele frequency, and to use this information in designing a statistical test to detect mutational
bias and selection. In the following sections, we use analytical theory and simulations to build intuition about
the relationship between these evolutionary processes and patterns that could be observed in GWAS summary
statistic data.
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Building intuition with the βDAF plot and Sβ

To build intuition about how evolutionary parameters affect the relationship between β and DAF we performed
analytical calculations and simulations of simple evolutionary models that included directional selection, stabilizing
selection, and mutational bias. Throughout these calculations, we suppose that although mutation rate can be
biased towards trait-increasing or trait-decreasing alleles, the distribution of trait-increasing alleles is the same as
that for trait-decreasing alleles.

Mutational bias alone

Mutational bias alone (i.e., in the absence of selection) does not induce a dependency between β̄ and DAF because
mutations with differing βs are all equally likely to reach any given frequency. Hence, if the mutational bias is
δ is the proportion of de novo mutations that are trait-increasing and the mean of the absolute value of a new
mutation is E[|β|], then E[β] = δE[|β|] − (1 − δ)E[|β|]. Note that when δ = 0.5, mutation rates are symmetric,
and E[β] = 0.

Supposing that we decompose the frequency spectrum into k bins, when there is no selection E[Sβ(0, 1)] =∑k
i=1 E[β] = k (δE[|β|]− (1− δ)E[|β|]). We perform this calculation for a variety of values of δ and a symmetric

distribution of effect sizes, as well as stochastic simulations in which we select effect sizes randomly (Fig. S2), and
observe excellent agreement between this simple calculation (solid lines) and the simulations (points).

E[Sβ(0, x)] increases monotonically and linearly in x when mutational bias acts in the absence of selection on
the trait, and the sign of Sβ is always equal to the direction of the mutational bias (i.e., mutational bias greater
than 0.5 leads to positive Sβ , while mutational bias less than 0.5 leads to negative Sβ).

Polygenic adaptation

We next considered a toy model in which directional polygenic adaptation acts to increase the frequency of trait-
increasing alleles. We suppose that trait-increasing alleles with effect size β have positive selection coefficients
s with β = sτ , and that selection coefficients are drawn from a leptokurtic Γ-distribution peaked near 0. This
model (which was proposed by Eyre-Walker for traits under negative selection (Eyre-Walker, 2010)) captures the
idea that many alleles will have weak effects, and hence weak selective effects, while a small portion of alleles may
have strong effects on the trait and be under relatively strong selection. We further suppose that the distribution
and mutation rate of trait-increasing are the same as trait-decreasing alleles. We assume that the influence of
binomial sampling is small and we do not account for it.

The time-dependent dynamics of the relationship between β and derived allele frequency are complex under
such a model (because they depend on the transition probabilities from every possible initial frequency to every
possible final frequency for all segregating selected alleles), but we can easily solve for the equilibrium state using
diffusion theory. Under this model, the equilibrium frequency spectrum (i.e., the distribution of derived allele
frequencies in the population at any given time) of trait increasing alleles is given by

f+
a,b(x) =

∫
γ

Γ[a, b, γ]e−2γ 1− e2γ(1−x)

(e−2γ − 1)x(1− x)
dγ =

(
b

4N

)a (−ζ[a, b
4N

] + ζ[a, 1− x+ b
4N

]
)

x(x− 1)
, (S1)

where Γ[a, b, γ] = ab

Γ(a)
γa−1e−bγ , a and b are the parameters of the Γ-distribution, ζ is the Riemann zeta function,

and γ is the population-scaled selection coefficient 2Ns. Trait-decreasing alleles have a neutral frequency spectrum,
which is given by f−a,b(x) = 1

x
. The mean value of β for trait increasing alleles at frequency x is given by

β+
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(S2)
For trait-decreasing derived alleles, the mean value of β does not depend on the derived allele frequency x (because
we assume trait-decreasing alleles evolve neutrally) , and is given by

β−a,b =

∫
γ

Γ[a, b, γ]
( γ

2N

)τ
dγ = (2Nb)−τ

Γ[a+ τ ]

Γ[a]
. (S3)
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Combining terms and weighting by the frequency spectra for trait-increasing and trait-decreasing alleles, we
find that the mean value of β as a function of DAF x (β̄(x)) is given by

βa,b(x) =

(8b)−τN−2τΓ[a+ τ ]
(
−(4N)a+τ (x− 1) + ba+τ (−ζ[a+ τ, b

4N
] + ζ[a+ τ, 1− x+ b

4N
])
)

Γ[a]
(
−(4N)a(x− 1) + ba(−ζ[a, b

4N
] + ζ[a, 1− x+ b

4N
])
) . (S4)

We performed stochastic simulations under this model, in addition to our calculations. For the simulations,
we used a weak distribution of selective effects (E[2Ns] ≈ 8) given by Γ[a = 0.0415, b = 0.00515625], which was
inferred from human conserved non-coding polymorphism data (Torgerson et al., 2009). Our results show that
trait-increasing alleles will be more likely to increase in frequency (Fig. S1B), and will outnumber trait-decreasing
alleles at all frequencies, resulting in βa,b(x) > 0 at all frequencies (Fig. S1C). This implies that under this simple
polygenic adaptation model, the Sβ will increase monotonically in the direction of the selection (i.e., if selection
favors increases in trait values, Sβ(0, x) will be positive and monotonically increasing in x, while Sβ(0, x) will be
negative and monotonically decreasing in x if lower trait values are preferred). Our analytical calculations from
eqn. S4 (Fig. S1C, black curve) are in tight agreement with the simulations (Fig. S1C, points). Equations in this
section were solved using Mathematica.

Mutational bias and negative selection

Negative selection against trait-altering alleles will also generate an increasing or decreasing βDAF relationship,
if trait-increasing and trait-decreasing mutations are not equally likely to occur. To better understand this rela-
tionship quantitatively, we used analytical calculations under Eyre-Walker’s quantitative trait model to calculate
the relationship between β and DAF.

We define mutational bias δ as the proportion of new mutations that are trait-increasing, and as in the
previous section, we suppose that effect sizes are given by β = |s|τ . In contrast to the previous section (but in
accordance with the original Eyre-Walker model), we suppose that all causal alleles are deleterious, regardless of
their direction of effect. We suppose that s is drawn from a Γ-distribution.

Under this model, we are able to calculate βa,b(x) using the same procedure as in the previous section. We
find

βa,b(x) = (1− 2δ)
4N−τΓ[a+ τ ]

(
−ζ[a+ τ, 1 + b

4N
] + ζ[a+ τ, x+ b

4N
]
)

Γ[a]
(
−ζ[a, 1 + b

4N
] + ζ[a, x+ b

4N
]
) . (S5)

We performed stochastic simulations under this model for a variety of values of δ, again using a weak dis-
tribution of selection coefficients that was fit to human conserved non-coding sequences and τ = 0.5 (Torgerson
et al., 2009). We find excellent agreement between our simulations and the analytical predictions (Fig. S3). When
δ = 0.5, trait-increasing and trait-decreasing alleles are exactly balanced, and there is no dependency of β on DAF.
In contrast, as δ becomes increasingly biased, trait-decreasing alleles further outnumber trait-increasing alleles
(Fig. S3). Since larger effect alleles are subject to stronger selection, the difference is greater at low frequency
than high frequency, generating a correlation between β and DAF. Taking Sβ(0, x) as the sum over the terms in
eqn. S5, we find that Sβ increases monotonically in magnitude in the same direction as the mutation bias under
this model. In contrast to the mutational-bias only model, Sβ(0, x) does not increase linearly in magnitude as a
function of x when selection acts.

Stabilizing selection with shifts

The previous sections show that a βDAF plot and Sβ can capture signals of positive and negative selection
as well mutational bias, but there is now substantial evidence that both positive and negative selection may
act on complex traits. Indeed, it seems unlikely that polygenic adaptation will continue indefinitely over long
evolutionary times, because this would imply that the trait would continue to increase or decrease over very long
timescales. A more natural way to model negative selection punctuated with periods of adaptation is through
stabilizing selection with shifts in the fittest value of the phenotype (Jain and Stephan, 2017).

We develop a polygenic selection quantitative trait model that maps selection coefficients s to effect sizes
β using the well-established Gaussian stabilizing selection model (Robertson, 1956; Barton, 1986). We suppose
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that stabilizing selection acts on a trait, and that the fittest value of the trait is φo (also referred to as the “trait
optimum”), such that the fitness f of an individual with trait value φ is given by

f(φ) = e
−(φ−φo)2

w2 , (S6)

where w is the breadth of the fitness function. We additionally suppose that the trait φ has a normal distribution
such that

P (φ) =
1√

2πσ2
e

−(φ−φ̄)2

σ2 , (S7)

where σ is the standard deviation of the fitness distribution and φ̄ is the mean trait value in the population.
Under these conditions, it is possible to solve for the per-generation, per-individual selection coefficient s as a
function of the above model parameters for causal alleles of effect size β. We calculate s by marginalizing the
fitness effect of a new mutation of effect size β across all fitness backgrounds. Our calculation proceeds similarly
to previous work (Barton, 1986; Simons et al., 2018), although we retain the dependence on the current mean
phenotype value (φ̄) and the phenotype optimum (φo), rather than assuming that the phenotype distribution is
centered at the optimum. While the full expression for the expected change in allele frequency is provided in the
next section, we note that when the trait is at equilibrium such that φ̄ = φo,

s ≈ − β2

2 (σ2 + w2)
, (S8)

and the expected frequency change δp for an allele at frequency p with effect size β when φ̄ = φo is

E[δp] ≈ − β2

2 (σ2 + w2)
p(1− p)(−1 + 2p), (S9)

which implies that the trait evolves as if underdominant when the mean population trait value is centered close
to the optimum.

Recasting the selection coefficient in terms of the trait distribution

To calculate the time-dependent selection coefficient s(t) of a site with effect size β, we first develop some results
that allow us to recast the selection coefficient s at equilibrium as a function of the proportion of the population in
which an allele of effect size β is fitness-increasing. Since the trait is normally distributed, the probability that an

individual has phenotype value φ, P (φ), is given by P (φ) = 1√
2πσ2

e
−(φ−φ̄)2

σ2 . To calculate the selection coefficient
for an allele with effect size β, we then marginalize across all trait backgrounds and possible genotypes in the
population to obtain the mean fitness effect, since the fitness effect varies across trait backgrounds according
to f(φ). The three possible genotypes for a causal variable allele are denoted as aa (homozygous ancestral),
ad (heterozygous), and dd (homozygous derived). For each genotype, we calculate the fitness w of an allele at
frequency p as

waa =

∫ ∞
−∞

f(φ)P (φ+ 2pβ)dφ, (S10)

wad =

∫ ∞
−∞

f(φ+ β)P (φ+ 2pβ)dφ, (S11)

wdd =

∫ ∞
−∞

f(φ+ 2β)P (φ+ 2pβ)dφ. (S12)

substituting in P (φ) and f(φ), these integrals can be solved to obtain waa ∝ e
−(2pβ+φo−φ̄)2

2(w2+σ2) , wad ∝ e
−((−1+2p)β+φo−φ̄)2

2(w2+σ2) ,

and wdd ∝ e
−(2(−1+p)β+φo−φ̄)2

2(w2+σ2) . We then can solve for the expected change in frequency E[δp] at time of an allele
at frequency p as

E[δp] =
p(1− p)wad + p2wdd

2p(1− p)wad + p2wdd + (1− p)2waa
− p, (S13)
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Taking a series expansion about β = 0, we find that

E[δp] ≈
β
(
φo − φ̄

)
p (1− p)

w2 + σ2
−
β2
(
p(1− p)(2p− 1)

(
w2 + σ2 −

(
φ̄− φo

)2))
2(w2 + σ2)2

(S14)

When φ̄ = φo, alleles evolve as if underdominant because E[δp] ≈ − β2

2(σ2+w2)
p(1 − p)(−1 + 2p). When φ̄ 6= φo,

alleles may either be expected to increase in fitness (i.e., be transiently positively selected) or decrease in frequency,
depending on their effect size and the current mean population trait value φ̄. In our Wright-Fisher simulations,
we replace the expected frequency change with eqn. S14 and track the current mean population trait value as a
time-dependent quantity (see next section for more details).

Validation of simulations

We developed a custom simulator of our model in Python. Our simulator accommodates changes in population
size, including explosive growth and bottlenecks, as well as any arbitrary distribution of selection coefficients.
We perform a burn-in period of 5N generations for a simulated population of size N , during which we suppose
that the population is close to equilibrium and hence s does not vary each generation. After the first burn-in, we
perform an additional 5N generations of burn-in during which we recalculate E[δp] as a function of β, φ̄, and φo
in each generation with eqn. S14. To calculate the current value of φ̄, we sum over all j causal alleles, such that
φ̄ =

∑
j 2qjβj , where qj is the frequency of a site with effect size βj .

For simulations of polygenic adaptation, at some time ts during the simulations, we reset φo to a new value,
which induces the trait distribution to be out-of-equilibrium with respect to the fitness function. During the
out-of-equilibrium period, a portion of the causal sites will be positively selected (specifically those that are
fitness increasing when marginalizing across all trait backgrounds, as described in the previous section), while the
remaining sites will be fitness-decreasing. Each generation, we recalculate δp based on the current configuration
of φ̄ and φo.

To validate our simulator, we simulated a complex selection and demographic model using previously published
models of European demographic history (Gravel et al., 2011) and selection on human conserved elements (Torg-
erson et al., 2009) in SFS CODE (Hernandez, 2008) and compared the SFS CODE frequency spectrum to the fre-
quency spectrum in our simulations. When no shift in the trait optimum occurs, selection coefficients in our model
have the same expected value as in the standard Wright-Fisher model with underdominance, so the frequency spec-
tra should be similar. However, since underdominance is not straightforward to simulate in SFS CODE, for this set
of validation simulations we replaced the underdominance term in our simulations with the standard genic selection
model. Results of these simulations are plotted in Fig. S4. We observe good agreement between the two spectra
overall, although our model results in a slight over-representation of rare alleles and a slight under-representation
of common alleles relative to SFS CODE. Note that there is weak LD in the SFS CODE simulations and that our
selection model differs slightly, so we do not expect perfect agreement. For the SFS CODE simulations, we used
the following command line: sfs code 1 500 -N 1000 -n 100 -A -t 0.001 -r 0.0 -TE 0.405479 -Td 0 P 0

1.982738 -Td 0.265753 P 0 0.128575 -Td 0.342466 P 0 0.554541 -Tg 0.342466 P 0 55.48 -L 100 150 -l

g 0.5 R -a N R -W 2 0 1 1 0.0415 0.00515625 -s <random seed> -o <out>

For the simulations presented in Fig. 1, the curves represent the mean over 100 independent simulations.
We used N = 7, 000 (where N is the ancestral population size) for the simulations in Fig. 1., but rescaled the
population size for computational efficiency to 2,000 for parameter inference (see next section). The simulation
code was implemented in Python and numpy, and will be freely available and posted on Github.

Sβ in simulation

We performed simulations of Gaussian stabilizing selection with shifts in the optimal phenotype value for a wide
range of parameter combinations. Since we ultimately apply our results to data from European GWAS, we apply a
European demographic model (including ancestral expansion and bottleneck events, as well as recent exponential
growth) that was fit to patterns of genomic diversity (Gravel et al., 2011). Our goal in these simulations is to
understand the qualitative behavior of Sβ as a function of evolutionary parameters (Fig. 1C-E), and in subsequent
sections we develop a more quantitative approach for mapping evolutionary parameters to observed patterns in
GWAS summary statistics.
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For simulations shown in Fig. 1, we used N = 7, 000 (in accordance with (Gravel et al., 2011)), a mutational
bias of δ = 0.4, h2 = 0.8, and selection strength ω = 1. Effect sizes drawn from a Gamma distribution with
a = 0.037 and b = 0.0008, and assumed a genome-wide polygenicity of 0.02 (i.e., 2% of target sites have a
non-zero effect on phenotype). While these choices are arbitrary, we use rejection sampling to find parameter
combinations that fit the observed data in the subsequent section.

On the advice of a reviewer, we also explored more gradual and less dramatic shifts than those we simulated
in Fig. 1. We simulated shifts of 0.5, 1, and 2 trait standard deviations that occur linearly over 100 generations
(e.g., the optimum increases by 0.5/100 per generation in the 0.5 case), but otherwise with the same parameters as
above. We performed this set of experiments to confirm that the dynamics we observe are not driven primarily
by unrealistically abrupt shifts that would not be observed in nature. We found that a gradual shift with ∆φ = 2
had nearly identical patterns to the instantaneous case presented in Fig. 1 (Fig. S19A-C). However, reducing
the total magnitude to 1 and 0.5 trait standard deviations drives substantial decreases in the magnitude of the
signal (Fig. S19D-I). As expected, these results imply that smaller and more ancient shifts will be more difficult
to detect, but instantaneous shifts drive similar patterns to gradual shifts (at least in this part of the parameter
space).

Inferring evolutionary parameters

We developed a rejection-sampling based approach to infer evolutionary parameters (Tavaré et al., 1997). Rejec-
tion sampling uses informative summary statistics in model-based simulations to infer an approximate posterior
distribution of model parameters. Simulations are performed under the model with parameters drawn from a
wide range of possible combinations, and then the subset of simulations that most closely match the observed
data are retained to build the posterior. The remaining simulations are rejected.

We performed simulations of Gaussian stabilizing selection with shifts in the optimal phenotype value using
parameter values that were sampled from broad prior distributions, and we fit these simulated data to the observed
Sβ(0.01, x) data for our phenotypes (we exclude alleles below 1% frequency to avoid the potential effects of rare
variant stratification). As summary statistics, we take Sβ(0.01, x) for x ∈ {0.02, 0.03, 0.04, 0.07, 0.12, 0.22, 0.52, 0.62,
0.72, 0.82, 0.92}. Additionally, since the absolute magnitude of Sβ depends on the units of the effect sizes, we

defined scaled Sβ(xi, xf ) as
Sβ(xi,xf )

Sβ(0.01,0.99)
, and use the scaled summary statistics as input to our method. As a

final summary statistic, we take
Sβ(0.01,0.99)

kβ̄
, where β̄ is the mean effect size over all effect sizes in the study (or

simulation) and k is the number of frequency bins (k = 100 here). As we showed earlier in the Supplemental
Information, Sβ has expectation kβ̄ when only mutational bias acts on the trait, so this summary statistic has
expectation 1 when only mutational bias acts on the trait.

We performed 105 simulations, drawing evolutionary parameters from very wide prior distributions. Param-
eters of the model included heritability (h2, uniform from 0.5 to 1), shift in optimum phenotype (∆φ, uniform on
-5 to 5 in units of the standard deviation of the ancestral trait distribution), polygenicity (Ψ, chosen uniformly
from 0.004 to 0.02 of sites genome-wide being causal), effect size distribution parameters (chosen from the square
root of a Γ-distributed according to a and b, with a chosen to be within a factor of 4 greater or less than 0.04 and
b chosen to be within a factor of 4 of 8e-5 – this enforces selection coefficients to be drawn from a Γ-distribution),
mutational bias δ (uniform on 0.25 to 0.75), the time of the shift in optimal phenotype (ts, uniform from -1
to 0.4 in coalescent units, corresponding to the time period ranging from 500,000 to 17,500 years ago), and
ancestral uncertainty (unifom from 0.7 to 1, where 1 represents perfect ancestral assignment). Because we vary
both heritability and the effect size distribution, we did not additionally vary the selection parameter of Gaussian
stabilizing selection ω, which we set at 1. We rescaled the population size to N = 2 × 103 for computational
efficiency (the ancestral population size in the demographic model is N = 7× 103). Although we do not directly
vary the selection coefficient distribution (because selection coefficients depend on effect sizes and the current
trait variance σ2, and we sample effect size parameters as opposed to selection parameters), our simulations in-
clude both very weak selection per site and strong selection per site. After each simulation finishes, we mix the
causal alleles with neutral alleles that are simulated under the same demographic model, and have effect size 0,
representing the portion of the genome that is not causal for the trait but is included in the GWAS. We calculate
the sum of squared differences between our simulated and observed statistics for all 105 simulations, and retain
the 0.25% of simulations that minimize this statistic.

To test our rejection sampling method, we masked the input parameter set of each simulation and attempted
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to infer the parameter values that were used to run the simulation. We used the maximum a posteriori estimate
as a point estimate of the parameter value for these experiments. We found high predictability of the direction
of both mutational bias δ and ∆φ (Fig. 3C&D), and noisy estimation of the magnitude of these parameters.
Most other parameters were poorly predicted. We found that the true timing of selection events was highly
correlated with the inferred timing, but a large number of outlier estimates make the estimates of this parameter
less trustworthy, so we do not report it. All other parameters were inferred with low accuracy, hence we only
report δ and ∆φ.

In addition to the power to detect mutation rate bias (δ) and shifts in optimal phenotype value (∆φ), we
also considered the false positive rate for detection of these parameters (Fig. S5). We examined the subset of
simulations among our 105 that had |∆φ| < 0.25 and the subset with 0.45 < δ < 0.55 and assessed the proportion
of these simulations for which we estimated maximum a posteriori parameters larger than y for all estimated
values y. We found that the false positive rate is high for both small mutation rate biases and weak shifts, but
low for effects as large as those we infer in the data, implying that our method is unlikely to result in a multiple
false positives for shifts and mutation rate biases. Note that this null is very conservative, because all of the
simulations we used to assess false positive rate include stabilizing selection, and the δ false positive simulations
include shifts in selection while the ∆φ false positive simulations include bias in mutation rate.

It should be noted that while our empirical selection detection method incorporates linkage, our rejection
sampling method does not. Linkage between causal alleles and non-causals could cause the data to have larger
deviations from 0 in Sβ than our simulations, possibly causing our estimates of the parameters to be upwardly
biased. For this reason (and because the estimates of parameters are noisy in our simulations), we focus primarily
on the direction of the effects rather than their magnitudes.

Empirical data analyses

Aggregating phenotype data

We obtained GWAS summary data from several published studies for nine different phenotypes as discussed in
the main text (Wood et al., 2014; Shungin et al., 2015; Locke et al., 2015; CDG Psychiatric Genomics Consortium,
2013; Franke et al., 2010; Day et al., 2015; Global Lipids Genetics Consortium et al., 2013; Okbay et al., 2016).
We obtained allele frequencies for each allele in each study from the GWAS summary data in the corresponding
study. To calculate Sβ for each study, we first needed to polarize all the alleles by their derived/ancestral status.
We obtained inferred derived/ancestral states for each allele from the 1000 Genomes project (Thousand Genomes
Project Consortium et al., 2015). Our permutation method requires that each allele then be assigned to a LD
block within the genome (Berisa and Pickrell, 2016). To assign each of these alleles to LD blocks, we also used
the 1000 Genomes data to obtain the genomic coordinates for each allele. Alleles for which we could not assign
states or LD blocks were excluded.

Calculating Sβ and implementing our empirical framework

To account for LD in selection tests for complex traits using GWAS summary data, we divided the genome
into 1,703 LD blocks, which were previously identified as being approximately independent (Berisa and Pickrell,
2016). For each LD block, we then select a random sign (positive or negative with equal probability), and
multiply all the effect sizes in the LD block by this sign. We then recompute summary statistics (such as the
correlation between frequency and MAF) on the randomized data. By repeating this procedure, we generate a
null distribution for the test statistic. This method maintains the correlations between effect sizes generated by
LD, the site frequency spectrum of the sampled alleles, and the joint distribution of the absolute value of effect
size and allele frequency, while breaking any relationship between effect sizes and allele frequency. Note that
this is a conservative permutation, because many of the alleles within an LD block are not linked or only weakly
linked. We further consider the robustness of our method to population stratification in a subsequent section,
which is a persistent potential source of false positives for studies of selection. To assess significance, we perform
a two-tailed test comparing the observed value of the test statistic to the permutation-based null distribution.
We performed 2,000 permutations for each phenotype.

We developed custom software implementing our approach in Python, which is freely available upon request
and will be posted on Github. To calculate Sβ , we group alleles into 1% frequency bins – without performing this
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grouping, many high frequency bins would have very few alleles and very noisy estimates of β. We selected 1%
because it strikes a balance between obtaining low standard errors on β and finely parsing the allele frequency
space, but we note that other choices of bin size could potentially improve our power.

Replication data & analysis

As a replication cohort for our top three selection signals, we obtained GWAS summary statistics from the
UK Biobank (UKBB) from https://data.broadinstitute.org/alkesgroup/UKBB/ (height, BMI, and educational
attainment – note that approximately 1/4 of the UKBB samples were included in Okbay et al, so the studies
are not completely independent). We used our framework to calculate Sβ on each phenotype, and estimate the
linkage-adjusted variance in the test-statistic. We perform a one-tailed test for significance, since we have an
expectation for the sign of Sβ from our first set of findings. We replicate our findings for both BMI (p = 0.0095)
and educational attainment (p < 5e− 4) (Fig. S18). Perhaps surprisingly, height did not replicate (see main text
for discussion of possible explanations).

In addition to Sβ , we performed a replication study at signals of selection that were used in previous projects
to identify signals of selection on height in the GIANT study. One study identified a positive correlation between
effect size and allele frequency (Yang et al., 2015), while another found a correlation of allele frequency difference
between northern and southern Europe and the p-value rank of the height increasing-allele (Turchin et al., 2012).
Neither of these correlations were replicated in the UK Biobank summary statistics (Fig. S6).

Neanderthal alleles

A list of Neanderthal alleles that were inferred with the S∗ statistic (Plagnol and Wall, 2006) was generously
provided by Rajiv McCoy and Josh Akey. In analyses using Neanderthal alleles, we masked all alleles that were
not present in this dataset. The dataset includes 139,694 SNPs, 139,381 of which we were able to map to rs
numbers and use in our analysis.

Neanderthal polarization and alternate summary statistics. Although we have highlighted the ancestral/derived
polarization, other polarizations, such as Neanderthal vs ancestral human alleles, can also provide insight into evo-
lutionary processes. Recent evidence suggests that Neanderthal immune-related variants and expression-altering
variants were likely targets of selection (Quach et al., 2016; Nédélec et al., 2016; McCoy et al., 2017), and some
Neanderthal variants are likely to alter complex traits (Simonti et al., 2016), but little is known about polygenic
selection on trait-altering Neanderthal alleles. If Neanderthals were “pre-adapted” to Europe, alleles that were
fixed in Neanderthals may have accelerated the adaptation of modern humans to the European environment
when admixed into humans (Enard and Petrov, 2018). Hence, we hypothesized that we may observe signals in
Sβ if alleles that fixed on the Neanderthal lineage were systematically biased in one direction than the other, or
if selection acted to promote or remove Neanderthal alleles with specific phenotypic effects once admixed into
modern humans.

We tested this hypothesis by computing Sβ on Neanderthal alleles that were included in previous GWAS. The
alleles were identified with the S∗ statistic (Plagnol and Wall, 2006) and allele sharing with Neanderthal genomes,
and hence do not suffer from the same potential biases from ancestral uncertainty as the derived/ancestral
polarization. We performed both a common allele test (Sβ(0.05,0.25)) and an all allele test (Sβ(0,0.25)) for each
of the nine phenotypes. We exclude alleles above frequency 0.25 because the vast majority of Neanderthal alleles
have frequencies below 0.25.

Across the nine phenotypes we studied, we found signals for both height (p <5e-4) and major depression
(p <5e-4) (Fig. S18), and a marginally significant signal for schizophrenia that did not pass a multiple testing
correction (p =0.015). The height and schizophrenia signals were strongest when including only common alleles,
whereas the depression signal was driven primarily by rare alleles. The height signal suggests selection that fa-
vored Neanderthal height-increasing alleles (either on the Neanderthal lineage or in modern humans), while the
depression signal suggests that Neanderthal alleles had a large impact on depression risk, which have been pref-
erentially pushed to low frequency by selection. The schizophrenia signal suggests selection against schizophrenia
risk or a bias towards protective alleles from Neanderthals. No other phenotypes had significant p-values.
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The impact of ancestral uncertainty on Sβ

Ancestral states are not directly observed in genomic data, and are typically inferred by comparing human
sequences to those of an out-group. The underlying assumption is that the allelic state in the out-group represents
the most likely ancestral state for the allele. While this approach correctly assigns the ancestral state for the
majority of alleles, it does not account for recurrent fixation events at a single site, leading to some rate of
ancestral misassignment. Since our method to detect selection compares ancestral and derived alleles, we sought
to understand how ancestral misassignment would impact our inferences.

Ancestral misassignment will tend to decrease the absolute value of Sβ within each frequency bin, and hence
decrease our power. To see this, suppose that for a given minor allele frequency x, we misassign ancestral state
with probability 1 − p, and Ψ(x) is the number of derived alleles observed at frequency x. We note that we can
rewrite Sβ as the difference in mean beta between ancestral and derived alleles of equal minor allele frequency
(i.e., Sβ =

∑
x β̄D(x) =

∑
x

1
2

(
β̄D(x)− β̄A(x)

)
. The expected value of the the test statistic within this bin is

then

E[Sβ(x)] =
1

2

((
pΨ(x)βD + (1− p)Ψ(1− x)βA

)
−
(
pΨ(1− x)βA + (1− p)Ψ(x)βD

))
, (S15)

where βD is the effect size of derived alleles and βA is the effect size of ancestral alleles. Note that if p = 0.5, we
are randomly guessing at ancestral states, and E[Sβ(x)] = 0. If p < 0.5, then the absolute value of E[Sβ(x)] is
strictly less than it’s true value (i.e., the value that would be observed with no ancestral uncertainty).

While this analysis shows that ancestral uncertainty serves to make our analyses more conservative, we also
sought to understand its potential impact on the observed relationship between allele frequency and effect size
(Fig. S8). Because Ψ(x) is generally much larger than Ψ(1− x) for x < 0.5 (i.e., there are more rare alleles than
common alleles in genomic sequencing data), we expect that the impact of ancestral uncertainty will be greatest
at very high derived allele frequencies (e.g., x > 0.9). We fit a linear model by regressing the mean effect size on
allele frequency for the observed height data for derived alleles in the frequency range 40-60%, and extrapolated
this curve out to 100% frequency, supposing that frequencies near 50% were only modestly impacted by ancestral
uncertainty. We then simulated the impact of ancestral uncertainty at various levels from p = 1% to p = 10%.
At p = 10% uncertainty we see a striking resemblance between our simulated data and the observed data. We
conclude that moderate levels of ancestral uncertainty are likely responsible for the “S” shaped curve that we
observe for many of our phenotypes.
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Figure S1: A: When selection does not prefer either trait-increasing or trait-decreasing alleles,
and mutation bias does not act on a trait, then trait-increasing (pink) and -decreasing (blue)
alleles are expected to have identical frequency spectra and equal mean β values within each
frequency bin. B: When selection acts to increase a trait, trait-increasing alleles will increase in
frequency and persist longer than trait-decreasing alleles, resulting in a relationship between β̄
and frequency. C: β̄ vs DAF for a toy model of where trait-increasing alleles are favored. The
black line represents an analytical calculation (eqn. S4) while the black points are the results of
stochastic simulations.
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alleles for traits under selection. B: Sβ(0, x) for the same models in A. The solid lines represent
the results of analytical calculations (eqn. S5) while the points represent stochastic simulations.
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Figure S8: Sβ for height. The panels in the left column show the relationship between allele
frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ), and the right
columns show the null distribution of Sβ given by our permutation test. Panels A-C correspond
to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and panels G-I
correspond to xi = 0.05 and xf = 0.95
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Figure S9: Sβ for BMI. The panels in the left column show the relationship between allele
frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ), and the right
columns show the null distribution of Sβ given by our permutation test. Panels A-C correspond
to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and panels G-I
correspond to xi = 0.05 and xf = 0.95
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Figure S10: Sβ for educational attainment. The panels in the left column show the relationship
between allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ),
and the right columns show the null distribution of Sβ given by our permutation test. Panels
A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and
panels G-I correspond to xi = 0.05 and xf = 0.95. Note that the results for A-C are the same
as D-F because no alleles under 1% were included in the summary data for this study.
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Figure S11: Sβ for Crohn’s disease. The panels in the left column show the relationship between
allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ), and the
right columns show the null distribution of Sβ given by our permutation test. Panels A-C
correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and panels
G-I correspond to xi = 0.05 and xf = 0.95
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Figure S12: Sβ for schizophrenia. The panels in the left column show the relationship between
allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ), and the
right columns show the null distribution of Sβ given by our permutation test. Panels A-C
correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and panels
G-I correspond to xi = 0.05 and xf = 0.95
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Figure S13: Sβ for global lipid levels. The panels in the left column show the relationship
between allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ),
and the right columns show the null distribution of Sβ given by our permutation test. Panels
A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and
panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S14: Sβ for menopause onset. The panels in the left column show the relationship
between allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ),
and the right columns show the null distribution of Sβ given by our permutation test. Panels
A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and
panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S15: Sβ for major depression. The panels in the left column show the relationship
between allele frequency and β, the middle column displays the cumulative value of Sβ(xi, xf ),
and the right columns show the null distribution of Sβ given by our permutation test. Panels
A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01 and xf = 0.99, and
panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S16: Sβ for waist-hip ratio adjusted for BMI. The panels in the left column show the
relationship between allele frequency and β, the middle column displays the cumulative value
of Sβ(xi, xf ), and the right columns show the null distribution of Sβ given by our permutation
framework. Panels A-C correspond to xi = 0 and xf = 1, panels D-F correspond to xi = 0.01
and xf = 0.99, and panels G-I correspond to xi = 0.05 and xf = 0.95
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Figure S17: Sβ for BMI (A-C), height (D-F), and educational attainment (G-I) in the UK
Biobank. The panels in the left column show the relationship between allele frequency and β,
the middle column displays the cumulative value of Sβ(xi, xf ), and the right columns show the
null distribution of Sβ given by our permutation framework.
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Figure S18: Signals of putative polygenic selection and mutation bias on Neanderthal alleles.
A-B correspond to height, C-D correspond to schizophrenia, and E-F correspond to major
depression. The left column shows Sβ(0, x) for Neanderthal alleles (red) and modern human
alleles for comparison (truncated at allele frequency of 0.25). The right column shows Sβ(xi, 0.25)
for our permutations, where the observed signal is shown in the red dashed line and the value
of xi is indicated under the plot. We note that
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Figure S19: A-C: Simulations with the same parameters as Fig. 1C-E, but with the shift in
optimal phenotype of ∆φ = 2 occurring linearly over 100 generations (2500 years), rather than
instantaneously in a single generation. D-F: Simulations with the same parameters as Fig. 1C-
E, but with a shift of ∆φ = 1 occurring linearly over 100 generations. G-I: Simulations with
the same parameters as Fig. 1C-E, but with a shift of ∆φ = 0.5 occurring linearly over 100
generations.
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